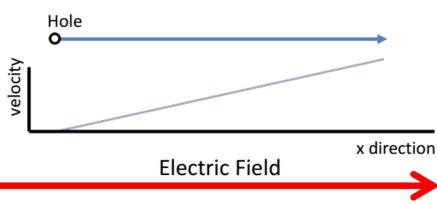
Charge Collection: Carrier Mobility & Lifetime

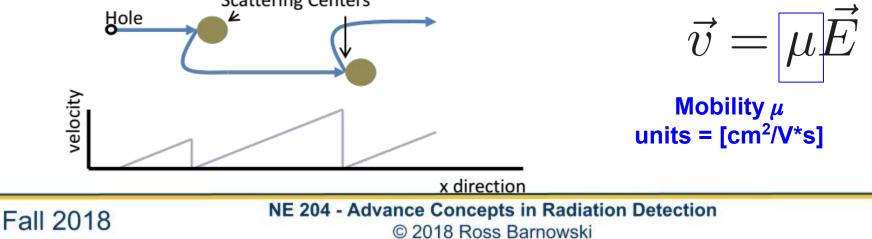
- Semiconductor detector signal \rightarrow induced from carrier motion
 - Weighting field / potential describes coupling of charge carriers to electrodes (see previous lecture)
 - Time-profile of carrier position
 - Carrier position as function of time: *mobility*
 - Diffusion can also play a role in charge collection
 - E.g. charge cloud dispersion over long drift distances
 - Signal due to carrier drift
 - Trapped carriers (recombination or deep traps) remove carriers from contributing to signal induction: *lifetime*
- Resources & Literature
 - Spieler Ch. 2 (esp. Sec 2.4 & 2.6)
 - S.M. Sze Physics of Semiconductor Devices (Ch 1)
 - Bart Van Zeghbroeck Principles of Semiconductor Devices

Carrier Diffusion

- \bigcirc
- Before we consider charge carrier motion under the influence of an electric field, it is important to note that the carriers are subject to thermal motion as well
 - Carrier concentration profile over time → Gaussian distributed ■ $\sigma = (D^*t)^{1/2}$, where D = diffusion constant
 - Thermal velocity quite large, but direction dictated by concentration gradient
 - $v_{th} = ((3kT)/m)^{\frac{1}{2}} \sim 10^6 \text{ cm/s for electrons in HPGe} @ 77k$
- Carrier diffusion is an important consideration in many circumstances
 - Under-depleted systems
 - Charge collection in low-field regions driven by diffusion
 - Extent of charge cloud on position resolution
 - $\sigma = (D^*t)^{\frac{1}{2}} \sim 50$ microns for 200 ns drift time; ~ 120 micron FWHM


Definition: Charge Carrier Mobility

3


• Ballistic motion: $v(t) = \int a(t)dt \rightarrow dt$

$$v = \frac{e\vec{E}}{m^*}t$$

Slide & Images courtesy Brian Plimley & Quinn Looker, NE204 2013

- Charge carriers in crystal lattice scattering along trajectory!
 - Charge carriers still accelerated || or anti-|| to E-field Scattering Centers

Mobility: Characteristics & Relationships

• Note that electrons and holes have different mobilities

Material	Atomic number	Operating temperature	Band gap $(eV)^a$	ε (eV) ^{a,b}	Density (g cm ⁻³)	Mobility(cm ² V ⁻¹ s ⁻¹) ^{<i>a</i>}	
						Electrons	Holes
Si	14	RT	1.106	3.62	2.33	1350	480
Ge	32	Liquid N ₂ (77 K)	0.67	2.96	5.32	3.6×10^{4}	4.2×10^{4}
CdTe	48, 52	RT	1.47	4.43	6.06	1000	80
CdZnTe	48, 30, 52	RT	1.57	4.64	5.78	1000	50-80
HgI ₂	80, 53	RT	2.13	4.22	6.30	100	4
GaAs	31, 33	RT	1.45	4.51	5.35	8000	400
TlBr	81, 35	-20°C	2.68	?	7.56		1.000 C
PbI ₂	82, 53	<u></u>	2.6	7.68	6.16	8	2
GaSe	31, 34		2.03	6.3	4.55		
AlSb	13, 51		1.62	5.05	4.26		
CdSe	48, 34		1.75	?	5.74	2 7	

Table 3.1 Parameters for some materials suitable for gamma-ray detectors

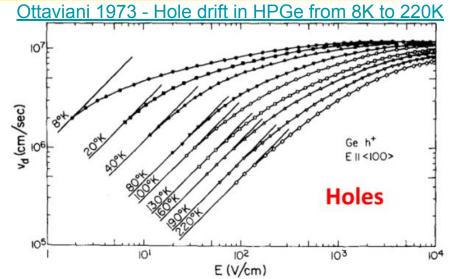
^a Values are given at 77 K for Ge and 300 K otherwise.

Gilmore Table 3.1

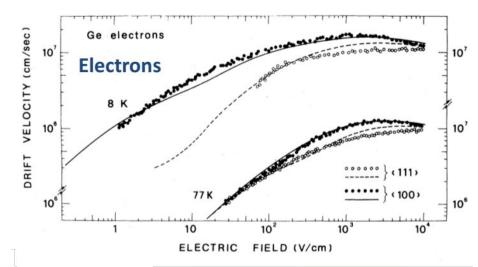
^b Electron-hole creation energy.

• Carrier mobility depends on:

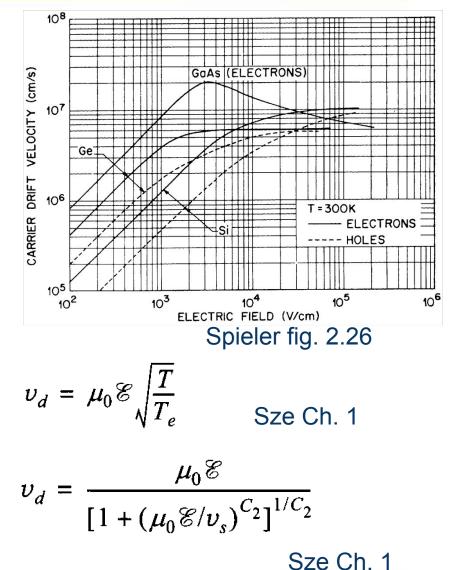
- Material, E-field strength, Temperature, Orientation of crystal lattice
- Mobility often treated as property of the material
 - Resitivity of doped semiconductor: $\rho = (eN_{Dopant}\mu)$
 - Diffusion coefficient: µ = e(kT)⁻¹D


Fall 2018

Ο


Mobility Dependence on Electric Field

- Linear relationship between v and E is valid for low
 E-field
 - Carriers @ therm. equilib.
 with lattice
- At higher E-fields, carriers are no longer at equilibrium with lattice
 - *v_d* relationship modulated by
 "effective temperature" of carriers:
- Very high fields
 - Optical phonon scattering
 - v_d independent of E


Jacoboni 1981 - Electron drift velocity and diffusivity in germanium

Mobility Dependence on Electric Field

- Linear relationship between v and E is valid for low
 E-field
 - Carriers @ therm. equilib.
 with lattice
- At higher E-fields, carriers are no longer at equilibrium with lattice
 - *v_d* relationship modulated by
 "effective temperature" of carriers:
- In practice, use single empirical equation:
 - $C_2 \sim 2$ for e^- , ~ 1 for holes
 - \circ C₂ depends on temperature

Mobility: Physical Mechanisms

cantly affects the mobility. The mobility from interaction with acoustic phonon of the lattice, μ_l , is given by³⁸

 $\mu_l = \frac{\sqrt{8\pi} q \hbar^4 C_l}{3E_{ds}^2 m_c^{*5/2} (kT)^{3/2}} \propto \frac{1}{m_c^{*5/2} T^{3/2}}$ (49)

where C_l is the average longitudinal elastic constant of the semiconductor, E_{ds} the displacement of the band edge per unit dilation of the lattice, and m_c^* the conductivity effective mass. From Eq. 49 mobility decreases with the temperature and with the effective mass.

The mobility from ionized impurities μ_i can be described by³⁹

$$\mu_{i} = \frac{64\sqrt{\pi} \varepsilon_{s}^{2} (2kT)^{3/2}}{N_{I} q^{3} m^{*1/2}} \left\{ \ln \left[1 + \left(\frac{12\pi \varepsilon_{s} kT}{q^{2} N_{I}^{1/3}} \right)^{2} \right] \right\}^{-1} \propto \frac{T^{3/2}}{N_{I} m^{*1/2}}$$
(50)

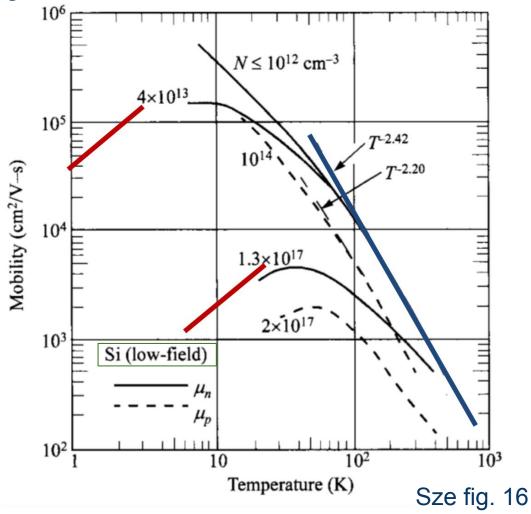
 Impurity scattering (colder is worse)

Phonon scattering

(warmer is worse)

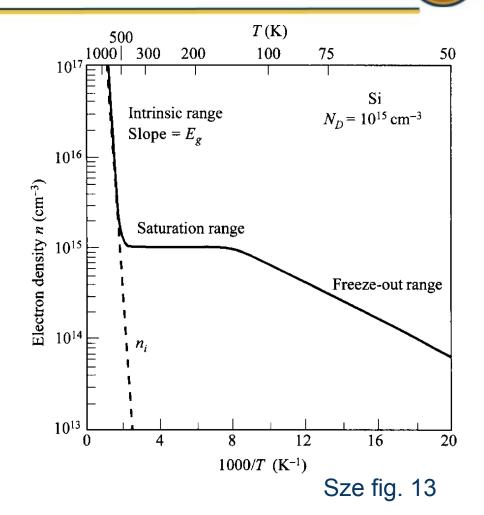
where N_I is the ionized impurity density. The mobility is expected to decrease with

Sze Ch. 1 - pg. 28

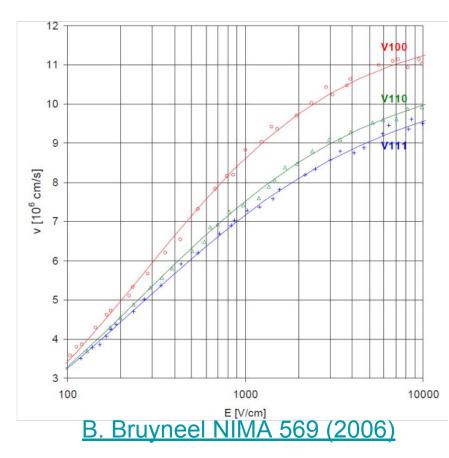

- N.B. Temperature dependence of different mechanisms
- Other types of scattering (see Sze or other semicon. physics text)
 - Dominant at high field

Mobility: Physical Mechanisms

- Temperature Dependence
 - Phonon scattering (warmer is worse)


 Impurity scattering (colder is worse)

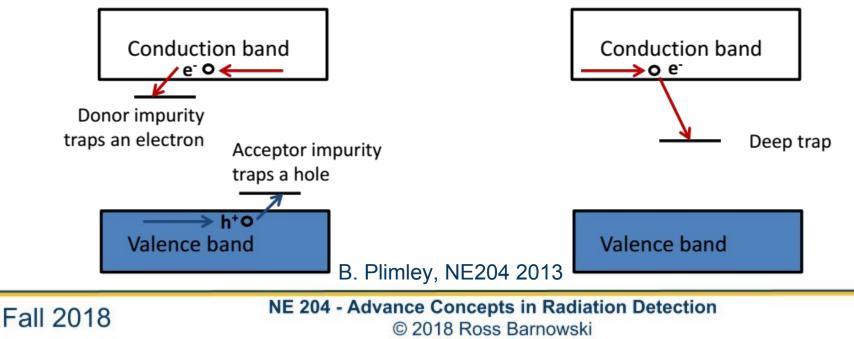
Slide courtesy Brian Plimley NE204 2013


Aside: Carrier Freeze-out

- A consideration for detector operation at very low (sub LN₂) temperature
- Low carrier density due to incomplete dopant ionization
 - Depends on
 - Dopant concentration
 - Compensated material
- For more info, see
 - Sze
 - Principles of Semiconductor
 Devices

Mobility Anisotropy

- Mobility depends on crystallographic direction
- E.g. in Ge
 - Electrons slower along [111]
 - Holes faster near along [100]
- For further info:
 - L. Mihailescu NIMA 447(2000)
 - <u>B. Bruyneel NIMA 569 (2006)</u>



Carrier Lifetime

- Independent of drift velocity or drift distance
- Lifetime is limited by impurities, lattice defects, dislocations, etc.
 - Provide sites for trapping and/or carrier recombination
 - Deep trap characteristic trapping time >= collection time

Mobility-Lifetime Product, $\mu\tau$

- Spieler sec. 2.6
- Given drift in applied field, can combine carrier mobility and lifetime to yield quantity proportional to the average drift length
 - $\circ \quad \mathsf{L} = (\mu \tau)^* E$
 - N.B. units of $\mu \tau \rightarrow [\text{cm}^2/\text{V}]$
- Hecht Relation

Fall 2018

 Describes ratio of induced charge to total charge initially generated in terms of the mobility and mean carrier lifetime

$$\frac{Q_s}{Q_o} = \frac{L_e}{d} \left[1 - \exp\left(\frac{d - x_o}{L_e}\right) \right] + \frac{L_h}{d} \left[1 - \exp\left(\frac{x_o}{L_h}\right) \right]$$

• Provides means for measuring charge collection properties

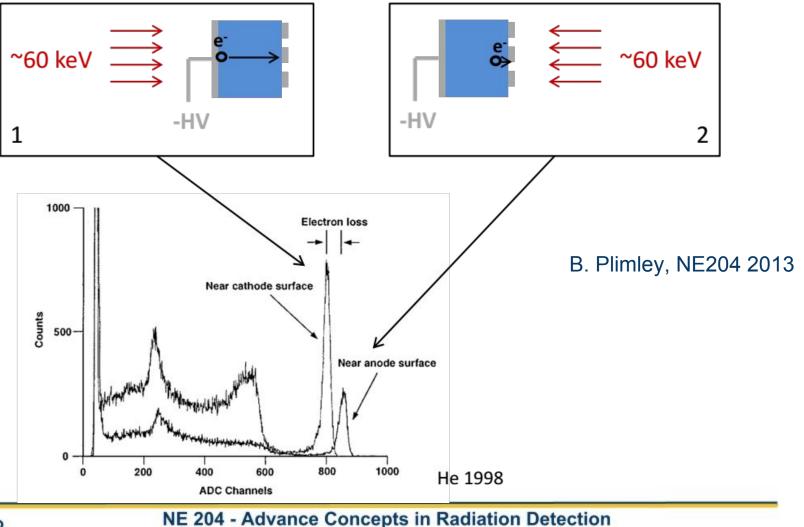
Values of Mobility and Lifetime

• At 300 K (unless otherwise noted)

Material	μ_{e}	μ_{h}	(μτ) _e	(μτ) _h
Si	1350	450	> 1	> 1
Ge	3900	1900	> 1	> 1
Ge (77 K, 10 ³ V/cm)	~1 x 10 ⁴	~8 x 10 ³	> 10	> 10
CdTe	1100	100	3 x 10 ⁻³	2 x 10 ⁻⁴
Cd _{0.9} Zn _{0.1} Te	1000	120	4 x 10 ⁻³	1.2 x 10 -4
Hgl ₂	100	4	3 x 10 ⁻⁴	4 x 10 ⁻⁵

Table from B. Plimley, NE204 2013

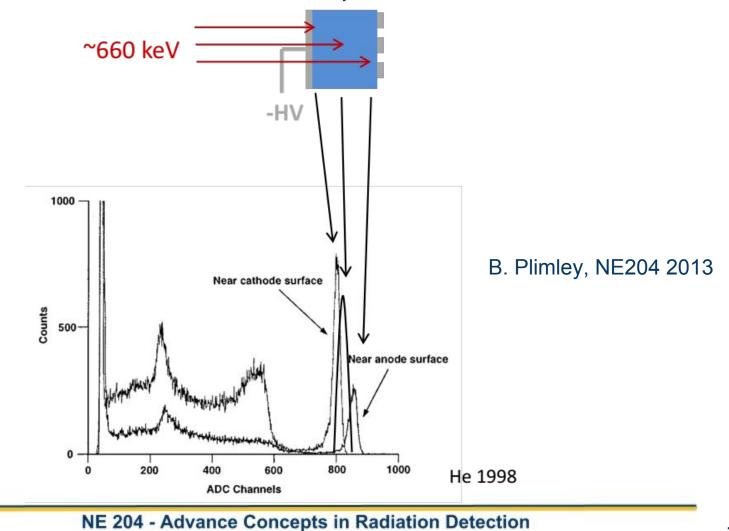
Measuring Charge Collection Properties



- Hecht relation enables indirect measurement of mobility-lifetime product, but not μ or τ individually
- For detectors with **single-polarity sensing**, possible to directly measure $\mu\tau$ as well as μ or τ individually
 - This is the basis for lab 6 (HPGe strip detector) and lab 7 (CZT w/ pixelated anode)
- Useful resources
 - Z. He, G. Knoll, D. Wehe 1998 Direct measurement of $\mu\tau$ in SPS CZT
 - Ruzin & Nemirovsky Evaluation of $\mu\tau$ by spectroscopy in CZT

Example: Measuring $\mu\tau$

- Pulse-height deficit vs. position
 - Use low-energy gamma-ray source to constrain interaction depth



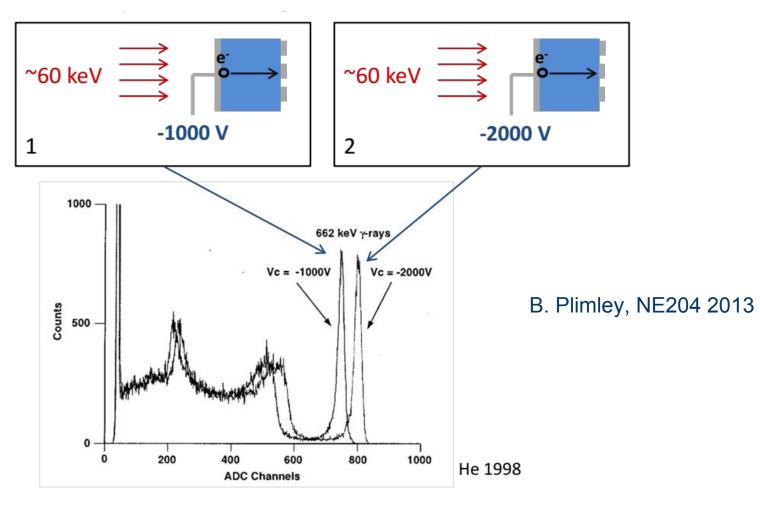
Fall 2018

© 2018 Ross Barnowski

Example: Measuring $\mu\tau$

- Pulse-height deficit vs. position
 - Use DOI to determine interaction position

Fall 2018


© 2018 Ross Barnowski

Example: Measuring $\mu\tau$

• Pulse-height deficit vs. applied bias

Fall 2018