Signal Formation in Semiconductor Detectors

- Integrate induced current from charge motion to recover induced charge ∝ initial # charge carriers (energy dep.)
 - Shockley-Ramo theorem greatly simplifies analysis of induced current/charge
 - Calculate signal shapes for various detector/electrode geometries
 - Position-sensitive gamma-ray detectors, pulse-shape analysis
- Applications in semiconductor detectors
 - Compound Semiconductors with poor hole mobility
 - Pixelated anode, coplanar grid electrodes, virtual Frisch grid
 - Small-pixel effect
 - Lateral position sensitivity
 - Sub-pixel position resolution: "image charges"
 - Depth determination (ΔT_{50} , Cathode/Anode ratio)
 - Event selection based on signal shape
 - E.g. PPC for rare-event searches
 - Exotic electrode segmentation schemes

Induced Signal

- For radiation detectors based on detection of direct ionization (gas det., semiconductors): signal is due to the motion of charge carriers
 - Thus, the signal ultimately depends on:
 - i. Position of charge carriers as a function of time
 - ii. Coupling of charge carriers to sensing electrodes
- I. Depends on electric field and mobility
 - $\circ p(t) = p_0 + v_d * t$
 - p = position as function of time
 - $v_d = carrier drift velocity = \mu^* E$
 - Note that electric field (*E*) is likely also position dependent!
 - E →Poisson equation: $\nabla^2 \phi = \rho/\epsilon$
- II. Weighting potential/field \rightarrow Laplace equation: $\nabla^2 \phi_w = 0$
 - Shockley-Ramo theorem

Shockley-Ramo Theorem

- Why do we make such a big fuss over it?
 - Greatly simplifies calculation of induced charge:
 - Without SR: calculate instantaneous *E* from *q* at every point along trajectory & integrate E over electrode surface:

Shockley-Ramo Theorem

- Why do we make such a big fuss over it?
 - With SR theorem, can describe coupling of charge to any electrode much more simply: Weighting field
 - $i_{induced} = q \, \mathbf{v} \cdot \mathbf{E}_{weighting}$
 - $Q_{induced} = q \Delta \varphi_{weighting}$ Weighting potential • See Spieler sec. 2.5 for derivation (or RA1, RA6)

- Solve for weighting field ($E_{weighting}$) and weighting potential ($\varphi_{weighting}$) via Laplace equation (ignoring static space charge) $\circ \nabla^2 \varphi_{weighting} = 0$ $E_{weighting} = -\nabla \varphi_{weighting}$
 - Boundary conditions

Fall 2018

- Potential at electrode of interest = 1
- Potential at all other electrodes = 0

Applying Shockley Ramo

- How do we get from Electric & Weighting fields/potentials to signals?
- 1. State your assumptions! E.g:
 - a. Point-charges (ignore electron cloud)
 - b. Carrier velocity (see Knoll) $v = \frac{\mu_0 E}{(1 + (E/E_0)^{\beta})^{1/\beta}}$
 - c. Many others...
- 2. Solve for Weighting and Electric potentials (and fields) for given geometry & electrode configuration
- 3. Select an initial position, r_0

Applying Shockley Ramo

- $E_{w'} \varphi_w$ depend only on geometry
- Simple geometries: analytic solutions
 - Planar, 2-electrode geom

NE 204 - Advance Concepts in Radiation Detection

Applying Shockley Ramo

 \bigcirc

- $E_{w'}$, φ_{w} depend only on geometry
- Simple geometries: analytic solutions
 - Through-hole coaxial geometry

$$Q(t) = Q^{-}(t) + Q^{+}(t)$$
 Knoll ch. 12
$$Q^{+}(t) = \frac{q_{0}\alpha}{V_{0}} \Big[r_{0}^{2} - r_{h}^{2}(t) \Big] + \frac{q_{0}\beta}{V_{0}} \ln \frac{r_{0}}{r_{h}(t)}$$

$$Q^{-}(t) = \frac{\Delta E^{-}}{V_{0}} = \frac{q_{0}\alpha}{V_{0}} \Big[r_{e}^{2}(t) - r_{0}^{2} \Big] + \frac{q_{0}\beta}{V_{0}} \ln \frac{r_{e}(t)}{r_{0}}$$

© 2018 Ross Barnowski

Fields and Potentials

 For more complex geometries / electrode structures → numerical solutions for electric & weighting potentials/fields E.g. Closed-Ended coaxial HPGe detector

Images from M. Agostini - Pulse Shape Discrimination for GERDA Phase I Data

Fall 2018

NE 204 - Advance Concepts in Radiation Detection © 2018 Ross Barnowski

Fields and Potentials

- \bigcirc
- For more complex geometries / electrode structures → numerical solutions for electric & weighting potentials/fields
 E.g. Segmented interted coax design (cf. guest lecture from Marco Salathe)

Performance of the SIGMA detector

Fall 2018

10 20 30

0 10 20 30

0 10 20 30

R (mm)

0 10 20 30

Case Study: Detector Designs

- Use knowledge of signal induction process in semiconductors to design detectors with "special" capabilities/characteristics
 - 1. Single-polarity charge sensing
 - 2. Position-sensitive gamma-ray detectors
 - 3. Event selection/rejection based on pulse-shape analysis

Single-Polarity Charge Sensing (SPS)

- In what scenario is single-polarity charge sensitivity useful?
 - When carriers have vastly different mobilities or lifetimes
 - Gasses
 - Compound Semiconductor Materials

Material	Z	Density [g/cm³]	Bandgap [eV]	W [eV]	ρ at 25ºC [Ωcm]	μ_e [cm ² /V s]	$\begin{array}{c} \mu_{\rm h} \\ [cm^2/V \\ s] \end{array}$	τ _e [s]	τ _h [s]	$\mu \tau_e$ [cm ² /V]	$\frac{\mu\tau_{_h}}{[cm^2/V]}$
Ge	32	5.32	0.7	2.96	50	3900	1900	>10-3	10-3	>1	>1
Si	14	2.33	1.1	3.62	<5x104	1400	480	>10-3	2x10-3	>1	~1
Diamond	6	6.0	5.4	13.25		2000	1600	10-8	<10-8	2x10 ⁻⁵	<2x10-5
CdTe	48,52	6.2	1.44	4.43	10 ⁹	1100	100	3x10-6	2x10-6	3.3x10-3	2x10-4
CdZnTe	48,30,52	~6.0	~1.8	~5.0	1011	1350	120	10-6	5x10-8	1x10-3	6x10-6
HgI_2	80,53	6.4	2.1	4.2	1013	100	4	10-6	10-5	10-4	4x10-5
GaAs	31,33	5.32	1.4	4.2	107	8000	400	10-8	10-7	8x10-5	4x10-6

Gas Ionization Detectors: Frisch Grid

- V_{ion} >> V_{e-}
 Signal component from ion drift ~10³ slower than electrons
- Frisch grid
 - Held at intermediate potential between two electrodes
 - Transparent to electrons
- Signal induction at anode due only to electron drift between grid/anode region!

Gas Ionization Detectors: Frisch Grid

- V_{ion} >> v_{e-}
 Signal component from ion drift ~10³ slower than electrons
- Frisch grid
 - Held at intermediate potential between two electrodes
 - Transparent to electrons
- Signal induction at anode due only to electron drift between grid/anode region!

SPS in Semiconductor Detectors

- Example 1: Coplanar grid (CPG) anode
 - "Interdigitated" electrode structure


```
Fall 2018
```

NE 204 - Advance Concepts in Radiation Detection © 2018 Ross Barnowski

SPS in Semiconductor Detectors

- Example 2: Virtual Frisch Grid (VFG)
 - Frisch-ring shielding electrode
 - Carrier motion coupled to Frisch ring until very near the anode

Cui, Bolotnikov et al - CZT Virtual Frisch-grid Detector: Principles and Applications

Fall 2018

NE 204 - Advance Concepts in Radiation Detection © 2018 Ross Barnowski

SPS in Semiconductor Detectors

- Example 3: Pixelated Anode
 - Rely on small-pixel effect (more on this in a bit)

Conventional detectors using cathode-anode planar-electrodes

Single-polarity charge sensing using **pixellated** anode electrodes

© 2018 Ross Barnowski

Small Pixel Effect

- As electrode decreases in size, φ_w extends smaller distance into detector vol.
 - Electrode width / det. Thickness
- Consequences
 - Single-polarity sensitivity (see previous slide)
 - Position sensitivity
 - Lateral due to φ_w directly
 - Depth from signal comparison between opposite electrodes

NE 204 - Advance Concepts in Radiation Detection

Position-Sensitive Detector Configurations

0

- Double-sided strip segmented electrodes
 - Each side provides 1D pos.
 Sensitivity
 - Requires good collection of both carriers (HPGe, thin CdTe)
 - Readout channels for n x n pixels:
 2n
- Spieler 1.11

CCI-2 (courtesy M. Amman)

- Pixelated electrode
 - 2D segmentation of one electrode
 - Single-polarity sensitivity (CZT)
 - Readout channels for n x n pixels: n^2

Y. Zhu - DSP Methods for Pixelated 3-D Position Sensitive RTSD

Pixelated TIBr - UM Orion Imaging Lab

Fall 2018

NE 204 - Advance Concepts in Radiation Detection

Position-Sensitive Detectors - Lateral Position Resolution

ov

1V

s

OV-

- φ_w for one pixel extends laterally over neighbor as well
 - Resultant "transient" or "image" charge signals as basis for sub-pixel resolution

Fall 2018

© 2018 Ross Barnowski

Sub-pixel Lateral Position Resolution

Signals From Thesis of RJ Cooper - c.f. smartPET

Fall 2018

NE 204 - Advance Concepts in Radiation Detection

© 2018 Ross Barnowski

Position Determination - Depth

- Small pixel effect also provides means of recovering the depth of gamma-ray interactions
 - Not directly though must be reconstructed by some means
 - Nature of depth sensitivity depends on carrier collection e.g.
 - DSSD both carriers collected: Depth ∝ ∆(time-of-charge collection)
 - Single-polarity schema Rely on amplitude or timing of cathode/anode signals

22

Depth of Interaction in DSSDs - ΔT_{50}

- **DSSD** detectors both electrodes segmented = small pixel effect on each electrode
 - Maximum induced current (t_{50}) occurs very 0 near the strip - treat the max current time as "arrival time" of charge cloud at strip

Amman, Luke - Three-dimensional position sensing and field shaping in orthogonal-strip germanium gamma-ray detectors

NE 204 - Advance Concepts in Radiation Detection © 2018 Ross Barnowski

Fall 2018

Depth of Interaction - Unipolar Sensing

- In instruments with poor μ_{hole} (e.g. CZT) can rely on relationship between cathode & anode signal
- For detectors with an unsegmented cathode (CPG, pix. anode)
 - Amplitude-based: Cathode/anode ratio
 - Electron drift time

W. Kaye - Energy and Position Reconstruction in Pixelated CdZnTe Detectors

NE 204 - Advance Concepts in Radiation Detection © 2018 Ross Barnowski

Pulse Shape Discrimination (in HPGe!)

- Event selection based on pulse shape
 - E.g. Lab 2... or rare event searches (Majorana)
 - P-type Point-Contact (PPC) detector

