
Topics, Attribution, & Literature
● Today we’ll talk about…

○ Photodetectors
■ Intrumentation for converting scintillation photons into electronic signal

○ Non-proportionality in scintillators
■ Causes and consequences for energy resolution

● Attribution
○ The majority of the material for these lectures is derived from the 

2015 IEEE short course on scintillation detectors by Dr. Stephen 
Derenzo

● Literature
○ W. Moses et al: The Origins of Scintillator Non-Proportionality
○ S. Payne et al: Nonproportionality of Scintillators: Theory and Experiment
○ Bora: Photon Statistics in Scintillation Crystals
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https://ieeexplore.ieee.org/document/6164292
https://ieeexplore.ieee.org/document/5204605
https://pdfs.semanticscholar.org/796e/d9db95bd3ac8c9502a7776a2bca4aafd6c10.pdf


Overview: Photodetectors
● Convert scintillation photons into electric signal for subsequent 

measurement
● Desirable properties of a photodetector include:

○ High photodetection efficiency
■ Often expressed as Quantum Efficiency, Q.E. = Nphotoelectrons/Nincident photons

○ Low electronic noise contributions
○ Large active area
○ Stability over time, temperature, etc.

● Main classes of photodetector:
○ Vacuum-based: e.g. Photomultiplier tube (PMT) Microchannel 

plate
○ Solid state: Photodiode (PD), Avalanche photodiode (APD), 

Silicon photomultiplier (SiPM)
○ Vacuum/SS Hybrids
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Photomultiplier Tube (PMT)

● Very high gain O(106 - 107)
● Peak Q.E.

○ ~25% for Bialkali (BA) photocathode
○ Up to ~40% for UBA

● Low noise (single-electron sensitivity)
● Fast time response

○ RT ~1ns
● Many sizes/shapes, including large area
● Sensitive to B-field
● Require large biases
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Knoll Fig. 9.1

https://www.hamamatsu.com/resources/p
df/etd/PMT_handbook_v3aE.pdf  

https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf
https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf


Photocathode
● Q.E. depends on incident photon 

energy
a. Create e-/h pair
b. E- transport to surface
c. Overcome potential barrier (work function)
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Entrance window

Electron in vacuum

Photon

● Trade-off between photon 
abs. / e- emission with 
thickness
○ Choose PC that matches 

scintillator emission
○ Consider window material

■ E.g. quartz for UV sensitivity

● E.g. Bialkali (K2CsSb)
○ Peak QE @ ~400nm (blue)

S. Derenzo



Electron Multiplication
● Multi-stage dynode structure

○ Multiplication via 2ndary e- 
emission

○ Very high gain: α�훿N

○ G very sensitive to HV
○ Finite transit time (delay)

■ Jitter →PC e- @ 1st stage

● Other multiplication structures
○ E.g. microchannel plate
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Knoll Fig. 9.9

Knoll Fig. 9.10



PMT Bases
● Resistive-divider network to apply dynode voltages
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Knoll Fig. 9.13



PMT Bases
● Resistive-divider network to apply dynode voltages
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Positive HV

Negative HV

Advantages

1) Photocathode at ground 
potential

1) Anode at ground potential
2) Can measure total signal 

by simple integration

Disadvantages

1) Anode at HV – coupling 
capacitor required- failure can 
damage electronics

2) d.c. signals blocked; bipolar 
pulses with zero area

3) Negative pulse component 
makes baseline unstable

1) To prevent ion migration in 
glass a photocathode shield at 
HV is required => electrical 
shock hazard

S. Derenzo



Solid State Photodetectors: Photodiodes
● Advantages

○ Can have very high Q.E.
■ 70-90%

○ Insensitive to B-field
● Disadvantages

○ Gain = 1
○ Leakage current →Noise

■ No single e- sensitivity
■ Can be cooled to improve 

SNR

● Small size diodes
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S. Derenzo

Reference: Blouke and Nelson, SPIE 1900 (1993), 228-240 



Solid State Photodetectors: APD
● Avalanche Photodiode (APD)

○ PD advantages with gain
■ Q.E. ~70% 
■ Wide spectral response
■ Insensitive to B-field

● Controlled avalanche mechanism
○ E.g. reach-through architecture

● Gain ~100 - 1000

● Position-sensitive APD (PSAPDs)
○ Monolithic APD with segmented readout
○ Imaging applications
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Spieler Fig 2.35

http://rmdinc.com/avalanche-photo-diodes/  

http://rmdinc.com/avalanche-photo-diodes/


Solid State Photodetectors: Silicon Photomultiplier (SiPM), 
Geiger-mode APD, Multipixel Photon Counter (MPPC)

● Basic principle: single photon 
counting with large gain
○ SiPM/MPPC = array of 

single-photon avalanche 
diodes (SPADs)

● Full Geiger-mode operation
● Properties

○ Advantages of solid state 
○ Very high gain (~106)
○ Fast response (~100 ps RT)
○ ~100V applied bias

● Issues
○ HV/Temp sensitivity (avalanche)
○ High dark pulse rate
○ Cross-talk & after pulsing
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S. Derenzo



Scintillator Pulse Shape Analysis
● Pulse mode operation

○ Output voltage signal on per-event 
basis

● Signal depends on time constant
○ �휏 << scint. decay time

■ Full charge not integrated
■ Preserve shape of current pulse

○ �휏 >> scint. decay time
■ Signal amplitude proportional to total 

charge (spectroscopy)

● Dependence of time const. scint. 
decay time
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Knoll Fig. 9.21

Knoll Fig. 9.22



Scintillator Pulse Shape Analysis
● Alternatives to conventional 

pulse height analysis for 
scintillator spectroscopy
○ Time-over-threshold (ToT)

● ToT Benefits
○ Simplicity

■ Low-power
■ High channel density

● Applications for multipixel 
systems with moderate 
energy resolution 
requirements
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https://ieeexplore.ieee.org/document/6308744 

https://ieeexplore.ieee.org/document/6308744


Energy Resolution in Gamma-Ray Spectroscopy with 
Inorganic Scintillators
● Factors that affect energy resolution of scintillators

○ Scintillation efficiency (scint. photons / deposited keV)
■ Uniformity of scintillation efficiency in the detector

○ Non-proportionality of light output w/ electron energy
○ Self-absorption / re-emission process
○ Light collection efficiency & uniformity
○ Photodetector Q.E. @ scint. Photon wavelength
○ Photodetector Q.E. & gain uniformity across input
○ Photodetector gain drift during acquisition

■ Gain-stabilization may be required
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Example: 662 keV in NaI(Tl)
● Assume Poisson
● Gain does not affect resolution!
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Best measured value for NaI(Tl) 5.6% fwhm
Typical value for NaI(Tl) 7%
Best measured value for pure NaI 3.8%
see http://scintillator.lbl.gov 
New codoping => 4.9% fwhm

S. Derenzo

http://scintillator.lbl.gov


Thought Experiment: Ultimate Scintillator Energy 
Resolution
● Assume Poisson process (stay tuned)
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Best measured value 2.0% fwhm
(several examples are in
http://scintillator.lbl.gov)

http://scintillator.lbl.gov


Observed Energy Resolution in Inorganic 
Scintillators

● Solid line = Poisson limit
● Why do nearly all scintillators has poorer energy 

resolution than predicted by Poisson counting statistics?
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https://pubarchive.lbl.gov/islandora/object/ir%3A119312 

https://pubarchive.lbl.gov/islandora/object/ir%3A119312


Scintillator Non-proportionality
● Light output per keV depends on energy

Ideal (proportional) response →Horizontal line at 1.0
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Figure 8.8 From W. Mengesha, T. Taulbee, B. Rooney and J. Valentine, “Light yield 
nonproportionality of CsI(Tl), CsI(Na), and YAP,” IEEE Trans Nucl Sci 45, pp. 456-461, 1998.

https://ieeexplore.ieee.org/document/672562
https://ieeexplore.ieee.org/document/672562


Scintillator Non-proportionality
● Light output per keV depends on energy

Ideal (proportional) response →Horizontal line at 1.0
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Payne et. al. Nonproportionality of Scintillators: Theory and Experiment, IEEE 2011

https://ieeexplore.ieee.org/document/5204605


Origin of Nonproportionality

● Scintillation efficiency depends on dE/dx
○ Competition between scintillation (radiative) & quenching 

(non-radiative) processes depends on ionization density
○ For a given amount of energy, variation in number and type of 

carriers →variation in dE/dx
● It is this additional variance that degrades energy resolution
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Origin of Nonproportionality

Photoelectron efficiency ηscint product of cascade-capture-detection efficiencies:

    ηscint = ηCAS ηCAP ηC-DET

Since uncorrelated, can add variances in quadrature:

(dηscint/ηscint)
2 =(dηCAS/ηCAS)2 + (dηCAP/ηCAP)2 + (dηC-DET/ ηC-DET)2

Carrier capture term, (dηCAP/ηCAP)2,  mainly responsible for nonproportionality
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Payne et. al. Nonproportionality of Scintillators: Theory and Experiment, IEEE 2011

https://ieeexplore.ieee.org/document/5204605


Nonproportionality Models
● “Minimalist” model

○ Only consider exciton transfer to lumin. Centers
○ Results in 2-param model
○ Ignores time dependence, radiative e/h recombination
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Nonproportionality Models
● Kinetic model

○ Model ionization density ρ as f(time) with multi-order terms
■ E.g. trapping →1st order process, 2-body Auger quenching →2nd order

○ At high ρ, highest order terms (i.e. quenching terms) dominate 
over radiative terms →scintillation eff. Drops with higher ρ

○ At low ρ, lowest-order terms dominate
■ Results in different behaviors depending on material

● E.g. Exciton-mediated luminescense (LSO:Ce, LuAG) vs. 
e/h-mediated luminescense (NaI(Tl))

● Practical limitations of Kinetic model
○ High-parameter model
○ Difficult to extract general insight given dependence on specific 

luminescense mechanism
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Nonproportionality Models
● Diffusion Model

○ Consider carrier motion from 
electrostatic forces/diffusion
■ O(ps) vs. O(ns) for quenching / 

scintillation

● Dependence on �휇e, �휇h
○ �휇h << �휇e

■ Recomb. & luminosity depend strongly on 
dE/dx

○ �휇h ~ �휇e
■ High recomb. & luminos.

● High �휇→less quenching→more 
proportional behav.
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The Origins of Scintillator Non-Proportionality
Diffusion coefficient 

(1-QF): Calculated fraction of carriers that survive 10 ps in 
high-density ionization track
(1-�휎NP): Scint. Eff. (or collection efficiency for semicond.) at 
low e- energy

https://ieeexplore.ieee.org/document/6164292


Effect of Nonproportionality on Resolution
● Magnitude of fluctuation (i.e. variance) due to 

nonproportionality effects on same order as 
counting statistics

● Deviation can be captured in Fano factor
○ High-energy electron cascade

■ Similar to semicond. Mechanism
■ Sub-Poisson (Fcascade < 1)

○ Conversion to optical photons
■ Independent, “rare” event
■ Poisson process (Fopt. phot. = 1)

○ Nonproportionality
■ Increased variance in # of scintil. 

Photons
■ Super-Poisson (Fnonprop. > 1)

● From: Photon Statistics in Scintillation 
Crystals

24

Knoll Fig. 10.23

https://pdfs.semanticscholar.org/796e/d9db95bd3ac8c9502a7776a2bca4aafd6c10.pdf
https://pdfs.semanticscholar.org/796e/d9db95bd3ac8c9502a7776a2bca4aafd6c10.pdf


Measuring Scintillator Nonproportionality
Scintillation Light Yield Nonproportionality Characterization 
Instrument (SLYNCI)
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