Attribution & Literature

The material for this lecture is derived from <u>Spieler</u>, particularly sections II, III, and IV. For the most complete treatment, consult Spieler's textbook <u>Semiconductor Detector Systems</u>

Energy Resolution

N.B. - More generally, shape of peak given by convolution of distributions describing each of these components!

- Multiple elements contribute to width of peaks in energy spectrum
 - Statistics of carrier generation
 - Electronic Noise
 - Charge collection

Fall 2018

Energy Resolution - Statistics of Carrier Generation

 $(\Delta E_{total})^2 = (\Delta E_{stat})^2 + (\Delta E_{electronics})^2 + (\Delta E_{charge-loss})^2$

N.B. - More generally, shape of peak given by convolution of distributions describing each of these components!

- Multiple elements contribute to width of peaks in energy spectrum
 - Statistics of carrier generation
 - Electronic Noise
 - Charge collection

Fall 2018

Statistics of Carrier Generation

- \bigcirc
- Ionization spectrometers based on collection of N carriers generated by energy deposition E
- Carrier generation is a **stochastic process**
 - Let ε represent average energy required to generate an "information carrier", IC
 - **Semiconductors:** IC = e/hole pairs | ε = 3-5 eV
 - **Gas Ionization:** IC = e/ion pairs | $\varepsilon \sim 30 \text{ eV}$
 - **Scintillation:** IC = optical photons | $\varepsilon^* \sim 10 \text{ eV}$
 - When accounting for collection/photocathode efficiency, $\varepsilon \sim 100 \text{ eV}$
- The generation of charge carriers is often modelled with the Poisson Distribution

Statistics of Carrier Generation

- **Poisson model** has nice property where $var(N) = \sigma_N^2 = N$
- However, model only applicable if carrier generation is independent of all other carrier generation events
 - Good model for scintillators: many competing decay modes
 - More detail in scintillator lectures
 - For gas ionization and semiconductors, ionization products are measured directly; limited number of mechanisms for energy absorption
 - Results in measured variance less than that predicted by Poisson model
- Deviation from Poisson-predicted variance quantified in Fano Factor, F = var(N) / N

NE 204 - Advance Concepts in Radiation Detection

© 2018 Ross Barnowski

Fano Factor in Semiconductor Detectors

- Spieler provides concise, conceptual model for the origin of the Fano factor in semiconductor detectors
 - For more information, start with the <u>original paper from Fano</u> Ο

$$\Delta E = 2.35 \cdot \varepsilon_i \sqrt{FN_Q} = 2.35 \cdot \varepsilon_i \sqrt{F\frac{E}{w}} = 2.35 \cdot \sqrt{FE\varepsilon_i}$$

Fall 2018

6

Energy Resolution - Statistics of Carrier Generation

- $(\Delta E_{total})^2 = (\Delta E_{stat})^2 + (\Delta E_{electronics})^2 + (\Delta E_{charge-loss})^2$

N.B. - More generally, shape of peak given by convolution of distributions describing each of these components!

- 2.5 2.0 FWHM (keV) 1.5 W_E 1.0 0.5 0 1200 1400 1600 200 400 600 800 1000 0 Energy (keV) Knoll 12.11
- Multiple elements contribute to width of peaks in energy spectrum
 - Statistics of carrier Ο generation
 - **Electronic Noise**
 - Charge collection Ο

Fall 2018

Sources of Electronic Noise

• Basic mechanisms contributing to electronic noise (from

- Current fluctuations given by fluctuations in number of charge carriers and charge carrier velocity
 - \circ Velocity fluctuations \rightarrow thermal noise
 - Number fluctuations
 - Shot noise, e.g. current flow through barrier junction
 - Carrier trapping/detrapping \rightarrow 1/f noise

Quantifying Electronic Noise

- Describe noise in terms of spectral density, i.e. noise power per unit bandwidth
 - Spectral noise power density
 - Spectral noise voltage density
 - Spectral noise current density

$$\frac{dP_n}{df}$$
$$\frac{dv_n^2}{df} = \frac{dP_n}{df}R$$
$$\frac{di_n^2}{df} = \frac{dP_n}{df}\frac{1}{R}$$

- Quantifying noise in terms of detector signal: Equivalent
 Noise Charge
 - Signal charge that yields SNR = 1
 - For ionization detector with average ionization energy, ε_i , noise level can be expressed in terms of energy by

$$E_{noise}(eV) = \varepsilon_i \cdot ENC$$

Characteristics of Electronic Noise

- Spectral distribution of both thermal and shot is constant
 - I.e. "white" noise: $\frac{dP_{noise}}{df} = const.$

Fall 2018

- 1/f noise exhibits a frequency dependence: $\frac{dP_{noise}}{df} = \frac{1}{f^a}$
 - *a* ~ 0.5 2 (discussed in a few slides)
- Thermal and shot noise are purely random and uncorrelated
- Amplitude distribution is Gaussian deviations symmetric about DC baseline level 100 %

Thermal (Johnson) Noise

- Electron velocities given by thermal distribution
- Spectral density of noise power can be derived from long-wavelength approx. to blackbody spectrum (Spieler 3.4.1)

$$\frac{dP_n}{df} = 4kT$$

- In elements with finite resistance, gives rise to voltage/current fluctuations: dv^2
 - Spectral noise voltage density:

$$\frac{dv_n^2}{df} \equiv e_n^2 = 4kTR$$

• Spectral noise current density:

$$\frac{di_n^2}{df} \equiv i_n^2 = \frac{4kT}{R}$$

Shot Noise

- Carrier injection over some potential barrier
 - Carrier injection across rectifying (PN junction), blocking contacts
 - Thermionic carrier generation (bulk leakage)
- Carrier injection an independent, stochastic process
 - Subject to statistical fluctuations
- Injection is random in time, contribution from each injection can be treated as delta pulse, yielding white (freq. independent) spectrum (see Spieler 3.4.2)

• Spectral current noise density:

 $i_n^2 \equiv \frac{di_n^2}{df} = 2eI$

I = average current, *Ne*

1/f Noise

- Results from trapping/de-trapping of carriers
 Trapping events are independent, random in time
- Characteristic times involved with traps of various depths
 - E.g. "shallow" trap \rightarrow small τ , "deeper" trap \rightarrow longer τ
- Multiple time constants give rise to 1/f behavior
 - Individual traps ~ $1/f_{\chi}^2$

$$i_{nf}^2 = 4NI^2 \left(\frac{\Delta G}{G}\right)^2 \frac{\tau}{1 + (\omega\tau)^2}$$

Signal Shaping

 Total noise of the system given by integrating spectral noise distribution over the bandwidth of the shaper

$$v_{no}^2 = \int_0^\infty e_n^2 A^2(f) df$$
 or $i_{no}^2 = \int_0^\infty i_n^2 A^2(f) df$

- v_{no}, i_{no} = noise at output of shaper
- A(f) = gain of shaper
- Total noise increases with (BW)^{1/2}
- N.B. Decreasing BW →longer rise times

Spieler fig 3.3

ENC of Charge-Sensitive Front End

Spieler fig 4.7

N.B. - Resistors can be modelled as voltage or current sources

- Resistors in parallel with input: noise current sources
- Resistors in **series** with input: noise voltage sources

 This is where the "series" / "parallel" noise monikers come from

 NE 204 - Advance Concepts in Radiation Detection

 © 2018 Ross Barnowski

Voltage (Series) Noise Sources

Fall 2018

Current (Parallel) Noise Sources

Fall 2018

Current (Parallel) Noise Sources

- Noise from feedback resistor
 - Thermal (Johnson) noise in feedback resistor parallel to amplifier input
- Very low-noise front-ends try to reduce noise by moving away from resistive feedback to eliminate this noise source
 - Leakage current through diodes in TRPs are a noise source too!
 - Optical-reset CSA's

Thermal noise $I_n^2 = (4kT/R_f)$

Figure created by Brian Plimley

ENC Analysis

Cumulative input noise voltage

$$e_{ni}^{2}(f) = e_{nd}^{2} + e_{np}^{2} + e_{nr}^{2} + e_{na}^{2} =$$

$$= \frac{2eI_{d}}{(\omega C_{d})^{2}} + \frac{4kTR_{p}}{1 + (\omega R_{p}C_{d})^{2}} + 4kTR_{s} + e_{na} + \frac{i_{na}^{2}}{(\omega C_{d})^{2}}$$

Noise voltage at output depends on freq. resp. of amplifier

$$V_{no}^{2} = \int_{0}^{\infty} e_{no}^{2}(f) df = \int_{0}^{\infty} e_{ni}^{2}(f) |A_{v}|^{2} df$$

Specific example of **ENC for CR-RC** shaper with $\tau_{int} = \tau_{diff}$

$$Q_n^2 = \left(\frac{\epsilon^2}{8}\right) \left[\left(2eI_d + \frac{4kT}{R_P} + i_{na}^2\right) \cdot \tau + \left(4kTR_S + e_{na}^2\right) \cdot \frac{C^2}{\tau} + 4A_f C^2 \right]$$

See Spieler 4.3.5 for full treatment

Fall 2018

ENC Analysis

A more general result for ENC was derived in RA 4 (Radeka):

$$Q_n^2 = i_n^2 F_i T_S + e_n^2 F_v \frac{C^2}{T_S} + F_{vf} A_f C^2$$

- *T_s* = shaping time
 C = total input capacitance
- $F_{i'}F_{v'}F_{vf} = "Shape$ factors" - can becomputed from IR ofshaper (see Spieler4.5.2)

Fall 2018

NE 204 - Advance Concepts in Radiation Detection

ENC Analysis

A more general result for ENC analysis was derived in reading assignment 4:

$$Q_n^2 = i_n^2 F_i T_S + e_n^2 F_v \frac{C^2}{T_S} + F_{vf} A_f C^2$$

Current noise sources

- Independent of input capacitance
- Contribution increases with increasing T_s

Minimum noise:

Voltage noise sources

- Increases rapidly with input capacitance
- Contribution decreases with increasing T_s

1/f noise sources

- Increases rapidly with input capacitance
- Independent of T_s, but depends on BW

 $v_n^2 = \int_{-\infty}^{f_u} \frac{A_f}{f} df = A_f \log \frac{f_u}{f_l}$

$$Q_n^2 = 2e_n i_n C \sqrt{F_i F_v} + F_{vf} A_f C^2$$

Note dependence on shape factors!

Noise Curves from Real Systems

 \bigcirc

- Some examples in Spieler 4.4
- Noise curve from one of our HPGe's can you diagnose the problem?

	FWHM (keV) @ 2402.57 keV, HV =	FWHM @ 2402
Shaping TIme	+2400	HV = +2500
12	0.75	4.6
6	0.69	2.6
4	0.74	2.05
2	0.85	1.33
1	1.01	1.11
0.5	1.27	1.27

NE 204 - Advance Concepts in Radiation Detection

© 2018 Ross Barnowski