
Pulse Formation and Shaping
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Detector Signal from Single Event
● Short current pulse (ns, �휇s) induced on electrode by each 

charge-generating event in detector
● Pulse shape depends on detector material properties, charge 

carrier mobility, electric field, geometry (weighting field), etc.
○ May contain information about interaction position in the detector

● Total charge delivered in the current pulse contains information 
about energy deposition or creating interaction

● The main goal in radiation spectroscopy is to measure the 
total charge generated by each deposition event
○ There are other applications where the goals may be different, 

e.g. particle tracking detectors
○ Design of signal-sensing circuits dictated by application
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Spectroscopy Signal Processing Chain
Analog Pulse Processing Chain

Digital Pulse Processing Chain
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Preamplifier Electronics
● Total charge in detector current pulse is 

proportional to energy deposited by 
interaction in detector.
○ Need to integrate current signal: Preamplifier!
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● Desired properties for spectroscopic preamplifiers:
○ Integrate all of the signal from detector
○ High gain (CSA: V/pC)
○ Response independent of detector
○ Low noise, stable

● Further considerations based on system/application
○ Event rate, multichannel detectors, etc.

● N.B. “Preamplifier” has more to do with position in the signal 
chain than its role in “amplification”



Charge Sensitive Preamplifier I
● Active integrator w/ negative 

feedback
○ Input impedance Zi →∞

■ No signal current through amplifier 
input

○ High open-loop gain (A is large)
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http://www.cremat.com/why-use-csps/

Zi = ∞

From Spieler

http://www-physics.lbl.gov/~spieler/SLAC_Lectures/PDF/Sem-Det-II.pdf


Charge Sensitive Preamplifier II
● Magnitude of voltage impulse ∝ total 

charge
● Rising edge contains additional information

○ Timing
○ Position sensitivity

● Resistive feedback
○ Discharge back to baseline
○ �흉 = RfCf >> tcollection
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ΔV ∝QTOT
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Charge Reset
● Continuous (passive) reset may not be ideal

○ High rates can cause DC voltage to exceed supply: “lock-up”
○ Thermal noise in Rf bad for ultra-low noise applications
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Pulsed Reset

Cont. Reset



Realistic Charge Sensitive Preamplifiers
● Cartoon illustrates operating principles, 

but assumes idealized components
○ Infinite input impedance, infinite speed

● Real CSA designs requires 
consideration of many more factors
○ Frequency response (impedance)
○ Timing characteristics (slew rate)
○ Matched input impedance for 

multichannel systems
○ Etc.

● Spieler is an excellent resource 
addressing these considerations
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Concept

Implementation

From Spieler

http://www-physics.lbl.gov/~spieler/SLAC_Lectures/PDF/Sem-Det-II.pdf


Output of Preamplification Stage
● Successfully converted detector signal to a step voltage, but…

○ Poor signal-to-noise ratio
○ Continuous reset preamps have long tails → pulse pileup
○ Tail pulse shape 

● Not suitable for direct measurement of peak-height
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http://www.cremat.com/why-use-csps/



Pulse Shaping I
● Spectroscopic information in 

magnitude of voltage step from 
preamplifier
○ Pulse height ∝ energy absorbed

● Maximize SNR 
○ minimize noise contributions to 

energy resolution
● Optimum shaping depends on:

○ Noise spectrum for system
○ Requirements for pile-up free 

counting
● N.B. the original shape of the signal 

is lost!
○ Pulse shape analysis
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Gilmore 4.12



Pulse Shaping II
● Pulse shaping is full of trade-offs
● Example 1: SNR vs. Rate capability

○ SNR is often improved by limiting 
high-frequency response (LP filter)

○ This broadens the pulse, reducing 
rate capabilities

● Example 2: SNR vs. Peak Detect
○ Optimal pulse shape for 

maximizing SNR = cusp
○ Sharp peak not optimal for MCA

● “Optimum” shaping driven by 
application
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Review: Analog Signal Shaping
● Analog pulse shaper often implemented 

as CR-(RC)n network
○ Unipolar, Gaussian-like (high n 

increases symmetry)
○ CR = differentiator (HP filt.)
○ RC = integrator (LP filt.)
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Gilmore 4.13

Typical semi-gaussian pulse resulting from CR-RCn shaping 
network. Listed times normalized by shaping time constant



Review: Analog Signal Shaping
Functions of the “Spectroscopic Amplifier”
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Energy Resolution
● Energy resolution is paramount for 

spectroscopy
○ Ability to identify features
○ Sensitivity
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Gilmore 6.1 Gilmore 6.2



Electronic Noise & Energy Resolution
● Several sources of variability contribute to overall energy resolution
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Knoll 12.11

Signal Variance >> Noise: e.g. Scintillator

Signal Variance << Noise: e.g. HPGe

From Spieler

http://www-physics.lbl.gov/~spieler/SLAC_Lectures/PDF/Sem-Det-II.pdf


Sources of Electronic Noise

● Detector leakage current - shot noise
● Noise in FET - thermal effects & shot noise
● Continuous-reset preamplifier: thermal noise in 

feedback resistor
● Transistor-reset preamplifier: leakage current through 

reset element
● 1/f “flicker” noise
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Noise Dependence on Shaping Time
Series (or voltage) noise

ENC2 ~ (4kTRS + e2
na) Cd

2 1/τ
(Johnson noise associated with series resistance and 
the thermal noise of the FET)

Parallel (or current) noise
ENC2 ~ (2qIL + 4kT/Rf)

 τ 
IL – full shot-noise leakage current
(Fluctuations in the (surface or bulk) leakage current)

1/f noise
ENC2 ~ A Cd

2

Trapping/Detrapping effects in FET, ...
(capture and release of charges in the input FET, not 
dependent on shaping time)

N.B.
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“Noise Corner” = Optimum SNR

Shaping time (�휇S)



Leakage Current
● Source of charge seen at 

preamplifier output
○ ∴ sometimes referred to as “step” 

noise
● Bulk leakage current

○ Thermal excitation of charge 
carriers across bandgap
■ ∝ T3/2exp(-Eg/(2kT))

● Surface leakage
○ Channeling/contamination on surf.
○ Mitigate with clean processing, 

guard rings
● Short shaping times to mitigate 

effect on energy resolution
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Leakage current seen on output 
of transistor-reset preamplifier



Ballistic Deficit
● Short shaping time desirable in 

many circumstances
○ Reduce pileup
○ Minimize parallel noise 

contributions
● Shaping time on order of pulse 

rise time → ballistic deficit
○ Charge collection / pulse 

shape variability
● Can be avoided with 

trapezoidal shapers
○ Introduce “flat-top” w/ 

duration>= maximum charge 
collection time
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Add flat top 
for BD

Gilmore 4.17

Knoll 17.24



Pulse Pile-up I
● Consequence of random nature 

of radioactive decay
○ Poisson random process
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Pulse Pile-up II
● Analog shapers often include 

“pile-up rejection” circuits
● Information from pile-up 

pulses is often recoverable
● Digital domain

○ Adaptive filtering
■ Signal shape depends on 

rate
○ Pile-up flagging

■ Record pile-up events for 
subsequent processing
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Pulse Pileup from CR-RC4 shaping 
network with Tshape = 1㎲ (Gilmore 
4.22)


