Fundamentals — Radiation Interactions

« Types of radiation and means of energy conversion
 Interaction/ detection processes

« Charged particles

« Electrons

* Photons

* Neutrons

Process signal to
Provide sensitive Convert deposited extract relevant

volume in which energy into information
radiation interacts electronic signal (energy, timing,
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General Principles of Radiation Detection

* Radiation detection
— Interaction of radiation with
Detector

matter produces ionization and dia lons, electrons,

. ) ) radiation i
electronic excitation or heat that ‘m excited atoms
can be measured: '

— Either primary charges are Scattered radiation

collected: o "
{ lonization chamber

Proportional counter

* Gas detectors Geiger-Miller counter

« Solid state detectors Si, Ge, CdZnTe, Hgl,,...

— Or photons resulting from de-
excitation of molecules of the
detector are converted to
secondary charges which are

COHeCt_eC!: Inorganic: Nal(Tl), Csl(Tl), LaBr, BGO,...
- Scintillators Organic: anthracence, stilbene, plastic,...
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Types of “lonizing” Radiation

« Charged particulate radiation
— Fast electrons and positrons (e”/e* or 3 particles)
— Heavy charged particles (A=1, protons, a particles,
fission fragments) | Directly
lonizing
(or other
 Uncharged radiation means...)
— Electromagnetic radiation (photons/ X rays, y rays)
—
— Neutrons (slow/fast, (ultra-)cold/hot) ~
— Neutrinos Indirectly
>_ ..
— Cold Dark Matter (?) lonizing
(or other
_J means...)
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Some Properties of lonizing Radiation

Heavy charged particles Energy when Generated
» a-decay Discrete
« Spontaneous fission Continuous

Electromagnetic radiation

« Gamma rays following beta decay or other Discrete
means of nuclear excitation

* Annihilation radiation (511 keV) Discrete

« Bremsstrahlung Continuous

» Characteristic X rays Discrete

Neutrons

* Spontaneous and induced fission Continuous

* Radioisotope (a,n) sources Continuous

« Photo-neutron (y,n) sources ~ Discrete

» Accelerated-based neutron generators ~ Discrete

[(D,D); (D,T); (p/d,n) reactions]

Fall 2018 NE 204 - Advanced Concepts in Radiation Detection and Measurement 4
© 2018 Ross Barnowski



Radiation Interactions — General Remarks

« To understand radiation detection, it is necessary to
understand underlying physics processes how radiation
iInteracts with matter, e.g. detectors...

Classes of radiation and their relationship

Uncharged Radiation Charged Radiation

Discrete energy loss Continuous energy loss

Nuclear reactions

eutrons ' particles (nuclei)
EM interactions:
(n,y) % +lonization
*Excitation
Photons | ~—  Electrons
EM interactions, photoelectric ~
absorption, Compton effect,...
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Means of and materials for converting energy to signal

* lonization, Scintillation, Heat vs. Gases, Liquids, Solids

Material Detector Excitation
State implementation energy
Gas Scintillation Light - Photons 10-200 eV
lonization Electron-ion pairs ~30eV
Liquid Scintillation Light - Photons 10-200 eV
lonization Electron-ion pairs ~30eV
Solid Scintillation Light - Photons 10-200 eV
lonization Electron-hole pairs 1-5eV
Bolometer Heat - Phonons ~0.001 eV

* And combinations of implementations, e.g.

— Gas & liquid: Scintillation (prompt) + ionization (delayed): Particle discrimination
(nuclear vs. electronic) , energy resolution improvements, 3D position
determination (Time-Projection Chamber)

— Solid: lonization + Bolometer: Particle discrimination (nuclear vs. electronic)
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Other means of detection ...
... Even non-EM radiation

« Detect by different interaction process as a way to distinguish particle types
to increase sensitivity by recognizing background ... important in the
detection of rare particles and processes such as CDM orv's ...

* For example:

CoGent, Majorana
lonization

%% %, CRESST Il L
%0 % Rosebud & 5.8
> ¢ o
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Review of Interactions
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Interaction of Massive Charged Particles

« Charged particles experience energy loss and deflection due to
interaction with: dE M 72

—Inelastic collisions with atomic electrons dx E

—Elastic scattering on nuclei ‘
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—Bremsstrahlung

ansmission

1 /E q%o g 05F———————=———————————- STRAGGLING
| I 7 R
- ] ] g/x ] sorber thickness / 1
o ‘Heinair | _~| ~"| ¥
> 400/‘” qY
f=
ST
Yy s —
z
g = | 9—" 1 , ]
N 4
8
—— Decreasing particle energy .
2
a - -
ol __L s = - s -t Deuterons in air from:
DISTANCE FROM END OF RANGE (cm) A.K. Solomon, "Why Smash Atoms?" (1959)
Fall 2018 NE 204 - Advanced Concepts in Radiation Detection and Measurement 9

© 2018 Ross Barnowski




Stopping Power
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Particle Identification

« E.g.*Ca +2%%Pb @ 200 MeV (P. Reiter, T.K. Khoo, Argonne National
Laboratory):

— Reaction products identification with AE-E telescope:

charged particle
Known/Observed
Quantities
dE/dx ~ Z%/v? AL AE
120-'? ;
1o * 5
_— ‘i;.’ AE VS. E \
A E ~ (1/2)mv? = oy
——— = (dE/dx * E) ~ Z°m/2
dE/dx ~ A E/(A Lsec® )
0-l'l'lI'I'I'l'l’l'l'l'l'l'
0 50 100 150 200 250 300 350 400 450 500 550 600 650
Energy loss in Si3 (4900um) [MeV)]
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Interaction of Fast Electrons

 Fast electron sources: beta decay, high- oy T L r
energy gamma-ray interactions

—Electronic losses with electrons from 0| e
absorber material - _ o 4

« Mass parity = can lose much more energy o
per interaction . XM

| .).P( o Nal =]
—Radiative losses

I
1

 Bremsstrahlung due to electron accel.
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Fall 2018 NE 204 - Advanced Concepts in Radiation Detection and Measurement 12
© 2018 Ross Barnowski



Interactions of Photons/ Gamma Rays

« A beam of photons passes through material until each undergoes a
collision at random and is removed from beam

— Intensity continuously drops, but energy remains constant (in
contrast to heavy charged particles which slow down
continuously without losing intensity)

| — | e—ﬂx _ w: attenuation coefficient
— 70 ’ H = i L: mean free path

« Four interaction processes:
— Photoelectric absorption
— Compton scattering
— Pair production
— Coherent or Rayleigh scattering (elastic)
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Photoelectric Absorption

« Entire photon energy Is transferred to
a bound (most likely K-) electron:

— @
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(low energy)
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Compton Scattering

« Scattering of a photon by a (free) electron that leads to a
moving electron and a lower energy photon:

E, = =
Y E
1+ =2 (1—cos@)
EO
0=mn
Ocs < Z/E 6=0 hv
an ¥
E recoil electron dE \/
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E
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Pair Production

* For E;>1.022 MeV, the photon can be converted
Into an electron-positron pair in the presence of a
nucleus.

 After slowing down, the positron eventually
annihilates into two 511 keV photons.

E_+E_. =E -2mc”

o < 2% In(E, —2m,c?)

Electron
pe

Y
(E > 1.02 MeV)

Positron
(annihilated)

-4-

Y
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Absorption of Gamma Rays

Absorption coefficient (cm=1)
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Interaction of Photons in Germanium
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Interactions of Neutrons

* A beam of neutrons passes through material until each undergoes a
collision at random and is removed from beam (strong interaction...)

— In contrast to photons, the neutrons are “scattered” by nuclei and usually leave
only a portion of their energy in the medium until they are very slow and can get
absorbed.

— Intensity drops as well as the neutron energy continuously.

— The degradation of the beam intensity follows Beer-Lampert exponential
attenuation law:

— —HX —
| = IOe J H= :uscattering + :u(n,;/) T

 We have to distinguish several classes of interactions:
— Elastic scattering (n,n)
— Inelastic scattering (n,n’)
— Radiative capture (n,y)
— Charged-particle production reaction (n,p), (n,a),...
— Fission 23°U, 23%Pu,...(n,f)
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Nuclear Reactions for Neutron Detection

Cross-section (barns)
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Absorption and Dose Characteristics
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