Notes

- GitHub Usernames
 - If you didn't fill out the form, email me with your name, student ID#, and github username before tomorrow!
- First reading assignment posted
 - Review Knoll Ch. 11, 12, and Appendix D, discuss by Friday evening
- Lab tomorrow (8/29) Computational crash-course
 - 2 6 PM in 1106 Etcheverry
 - Interactive example with lab report template
 - Not required
- Computer setup
 - If you do not have access to a computer running a *nix OS and are not comfortable with options like dual-booting, I strongly recommend you download the virtual machine linked on the front page of the class website before lab on 8/29

Radiation Detection and Measurement

Comprises instrumentation and methods for the detection,

characterization, and localization of emitted radiation and it's

sources

- Detection of radiation
 - Is radiation emitting source present or not?
 - Sensitivity, signal-to-background
- Characterization of radiation and emission sources
 - Energy/identification
 - Intensity/quantification
 - Time of arrival
 - Multiplicity
 - Type/charge/mass
 - Polarization

· ...

- Localization of radiation-emitting sources
 - Directionality (incident flux)
 - Position of origin

General Properties of Radiation Detectors

 \bigcirc

- Properties from physics, materials, geometry, etc.
 - Energy resolution
 - Efficiency
 - Timing Characteristics
 - Time resolution
 - Time-coincidence properties
 - Rate capabilities
 - Pulse-pair resolution, dead-time
 - Throughput
 - Position sensitivity
 - Pulse shape discrimination
- Engineering aspects
 - Relates to specific application
 - Size, weight, reliability, ruggedness, complexity, maintenance requirements, power delivery & consumption
- Cost!

Conceptual Applications of RD&M

 \bigcirc

www

ردي. مريدي

 \sim

- Radiation as an information carrier
 - Emission measurements
 - Derive information about object based on the radiation it emits
 - E.g. Gamma-ray spectroscopy, emission tomography (PET, SPECT)
 - Includes induced emission
 - Active interrogation
 - Transmission & scattering
 - Obtain information about transmission/scattering medium
 - E.g. radiography, CT, small-angle neutron scattering
- Detecting/characterizing the radiation itself
 - CDM searches, neutrinos, HEP

Practical Applications of RD&M

Medical applications

- Radiology (X-rays & photons for diagnostics, therapy)
- Emission tomography (PET, SPECT)
 - Medical diagnostics, pharmaceutical development
- Dosimetry

Scientific Applications

- Archaeology/Geochronology (¹⁴C and related dating techniques)
- Biology, Chemistry, Geology (radiotracer techniques [³²P])
- Physics, astrophysics, cosmology

Materials science

- Photon and neutron radiography, other imaging methods (SANS)
 - Defect detection, distribution studies

Industrial applications

- Mining (petroleum exploration), well logging
- Gauges (flow meters, thickness & density gauges)
- Gamma-ray altimetry

Radiation is Everywhere!

- EM radiation from cosmic microwave background (<u>CMB</u>) is pervasive
 - On old CRT TV's with analog receivers, ~1% of the static on the screen could be attributed to the CMB
- In this course, we'll focus on ionizing radiation
 - Directly & indirectly ionizing
 - Energy scale: ~10 eV to ~10 MeV
- Primarily focus on radiation originating in the atomic nucleus and related processes
 - Radioactivity!

http://cosmology.berkeley.edu/Educ ation/CosmologyEssays/The_Cosm ic_Microwave_Background.html

Model for Technological Progress

Example: Discovery of X-Rays

- November 8th, 1895: <u>Wilhelm</u> <u>Roentgen discovers X-rays</u>
- November 22nd, 1895: First radiographic X-ray
 - Of his wife Anna-Bertha's hand
- First publication of X-radiation
 - "On a new type of radiation", Dec.28th 1895
- Immediately realized potential for medical applications
 - By Jan. 1896 preliminary investigations for diagnostic images
 - Mid 1896 applied for imaging kidney stones, broken bones, etc

Taken **2 weeks** after the discovery of x-rays!

Presented mid-January, 1896

• Unfortunately, <u>dose effects not discovered until later</u>

A Century Later...

 \bigcirc

- ~\$34 Billion per annum global market
- Radiographic anatomical imaging
 - Computed tomography
 - Dual-beam (attenuation corr.)
 - Cone-beam (time & dose min.)
- Emission tomography for metabolic imaging
 - PET
 - Superior time resolution (LYSO) →Time-of-flight PET
 - SPECT
 - Detector position resolution impacts resolution
- Current limitations beyond instrumentation
 - Patient motion → data fusion
 - Gated collection, motion correction

Whole body PET

Astonish TF Non-TOF
Improved image resolution from TOF-PET

NE 204 - Advanced Concepts in Radiation Detection © 2018 Ross Barnowski

RD&M in Fundamental Science

- Atomic [100 eV 100 keV] and nuclear [1 keV - 20 MeV] physics

 e.g. GRETINA & AGATA
- Particle physics (HEP)
 e.g. ATLAS, CMS
- Rare event searches
 - CDM, 0vββ decay
 - Super CDMS, Edelweiss, LeGEND, LuXe/LZ, etc.

• Astrophysics

 e.g. Planetary exploration, X-ray and Gamma-ray astronomy

<u>GRETINA (10/30 detectors) -</u> <u>Nuclear structure, rare</u> <u>isotopes</u>

<u>Majorana Demonstrator -</u> <u>0vββ search with PPC HPGe</u>

ATLAS Detector @ LHC

COSI & Compton image of Crab Nebula

Fall 2018

NE 204 - Advanced Concepts in Radiation Detection © 2018 Ross Barnowski

Incredible Opportunities in RD&M

12

Example: Radiation Dose Effects

Linear No-Threshold model

- We have no idea what the effects \bigcirc of low-dose & low-dose rate (e.g. natural background) are
 - LNT: harmful
 - Hormesis: beneficial
- Difficult to study: no reliable, large-scale data for low-dose radiation
 - Essentially an instrumentation Ο problem
 - Too expensive to deploy existing instrumentation to

NE 204 - Advanced Concepts in Radiation Detection © 2018 Ross Barnowski

RELIABLE

DATA